| Page 1 | Mark Scheme                    | Syllabus |
|--------|--------------------------------|----------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0606     |

## **Mark Scheme Notes**

- Marks are of the following three types:
  - M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
  - A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
  - B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
   B2, 1, 0 means that the candidate can earn anything from 0 to 2.
- The following abbreviations may be used in a mark scheme or used on the scripts:
  - AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
  - BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
  - CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
  - ISW Ignore Subsequent Working
  - MR Misread
  - PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
  - SOS See Other Solution (the candidate makes a better attempt at the same question)

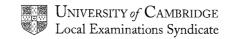
| Page 2 | Mark Scheme                    | Syllabus |
|--------|--------------------------------|----------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0606     |

## **Penalties**

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{\phantom{0}}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation.



**JUNE 2003** 


## INTERNATIONAL GCSE

MARK SCHEME

**MAXIMUM MARK: 80** 

**SYLLABUS/COMPONENT: 0606/01** 

ADDITIONAL MATHEMATICS
Paper 1



| Page 1 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0606     | 1     |

| 1. | x or y eliminated completely Uses the discriminant b²-4ac on a                                                                                                                    | M1<br>M1  | Allow as soon as x or y eliminated. Condone poor algebra – quadratic          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------|
|    | quadratic set to 0                                                                                                                                                                | IVII      | must be set to $0 - b^2$ -4ac = 0, <0, >0 all ok.                             |
|    | Arrives at $k = 0$ from $32k = 0$                                                                                                                                                 | A1        | For k and 0.                                                                  |
|    | Correct answer k≥0.                                                                                                                                                               | A1<br>[4] | For k≥0.                                                                      |
|    |                                                                                                                                                                                   | ניין      |                                                                               |
| 2. | Length = $(1 + \sqrt{6}) \div (\sqrt{2} + \sqrt{3})$<br>Multiplying top and bottom by<br>$\pm (\sqrt{3} - \sqrt{2})$<br>$\rightarrow \sqrt{3} + \sqrt{18} - \sqrt{2} - \sqrt{12}$ | M1        | Multiply both top and bottom by $\pm(\sqrt{3} - \sqrt{2})$ .                  |
|    | Reduces $\sqrt{18}$ to $3\sqrt{2}$ or $\sqrt{12}$ to $2\sqrt{3}$                                                                                                                  | M1        | Allow wherever this comes – not DM.                                           |
|    | $\rightarrow$ 2 $\sqrt{2}$ - $\sqrt{3}$                                                                                                                                           | DM1       | Dependent on first M – collects $\sqrt{2}$ and $\sqrt{3}$ .                   |
|    | →√8 - √3                                                                                                                                                                          | A1        | Co.                                                                           |
|    |                                                                                                                                                                                   | [4]       |                                                                               |
| 3. | (i) $32 - 80x + 80x^2$                                                                                                                                                            | B1 x 3    | Allow 2 <sup>5</sup> for 32 (if whole series is                               |
|    |                                                                                                                                                                                   |           | given, mark the 3 terms).                                                     |
|    | (ii) $(k + x) \times (i)$                                                                                                                                                         |           |                                                                               |
|    | Coeff. of x is $-80k + 32$<br>Equated with $-8 \rightarrow k = \frac{1}{2}$ or 0.5                                                                                                | M1<br>A1√ | Must be 2 terms considered.<br>For solution of k = (-8 - a) ÷ (b)             |
|    | Equated with -0 7K - 7201 0.0                                                                                                                                                     | [5]       | 1 or solution of k = (-o - a) . (b)                                           |
| 4. | Liner travels 54km or relative speed of lifeboat is 60km/h.                                                                                                                       | B1        | Anywhere.                                                                     |
|    | 36 (54)<br>60 (90) (d)                                                                                                                                                            |           |                                                                               |
|    | Correct vel./distance triangle                                                                                                                                                    | B1        | Triangle must be correct with 54, 45°, 90 or 36, 45°, 60 or even 36, 45°, 90. |
|    | Use of cosine rule in triangle                                                                                                                                                    | M1        | Allow for other angles.                                                       |
|    | $V^2 = 60^2 + 36^2 - 2.60.36\cos 45$ or $d^2 = 90^2 + 54^2 - 2.90.54\cos 45$ .                                                                                                    | A1        | Unsimplified and allow for 135° as                                            |
|    |                                                                                                                                                                                   |           | well as 45°.                                                                  |
|    | $V = 42.9 \text{ or } d = 64.4 \rightarrow V = 42.9$                                                                                                                              | A1<br>[5] | Co.                                                                           |
|    |                                                                                                                                                                                   |           |                                                                               |

| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0606     | 1     |

| 5. | Elimination of x or y.                                                                                                                              | M1   | x or y eliminated completely.                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------|
| 0. | $\rightarrow 4x^2 + 6x - 4 = 0 \text{ or}$                                                                                                          | A1   | Correct equation – not necessarily =                 |
|    | $y^2 - 12y + 11 = 0$                                                                                                                                |      | 0                                                    |
|    | Solution of quadratic = 0.                                                                                                                          | DM1  | Usual method for solving quadratic =                 |
|    |                                                                                                                                                     |      | 0                                                    |
|    |                                                                                                                                                     |      |                                                      |
|    | $\rightarrow$ (0.5, 11) and (-2, 1)                                                                                                                 | A1   | All correct. Condone incorrect                       |
|    |                                                                                                                                                     |      | pairing if answers originally correct.               |
|    | Length = $\sqrt{(2.5^2 + 10^2)}$ = 10.3                                                                                                             | M1A1 | Must be correct formula correctly                    |
|    |                                                                                                                                                     | [6]  | applied.                                             |
|    | (2 2) (2 2) (4 2)                                                                                                                                   |      |                                                      |
| 6. | $A^{2} = \begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & -9 \\ 0 & 1 \end{pmatrix}$ | M1A1 | Do not allow M mark if all elements                  |
|    | $(0 \ 1)(0 \ 1)(0 \ 1)$                                                                                                                             |      | are squared. If correct, allow both                  |
|    |                                                                                                                                                     |      | marks. If incorrect, some working is                 |
|    |                                                                                                                                                     |      | needed to give M mark.                               |
|    | (1 3)                                                                                                                                               |      |                                                      |
|    | $A^{-1} = \frac{1}{2} \times \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$                                                                          | B1B1 | B1 for ½, B1 for matrix.                             |
|    | (0 2)                                                                                                                                               |      |                                                      |
|    | (2 15)                                                                                                                                              |      |                                                      |
|    | $B = A^2 - 4A^{-1} = \begin{pmatrix} 2 & -15 \\ 0 & -3 \end{pmatrix}$                                                                               | M1A1 | M mark is independent of first M.                    |
|    | $\begin{pmatrix} 0 & -3 \end{pmatrix}$                                                                                                              | [6]  | Allow M mark for 4A <sup>-1</sup> - A <sup>2</sup> . |
|    |                                                                                                                                                     | [-]  |                                                      |
| 7. | $f(x) = 4 - \cos 2x$                                                                                                                                |      |                                                      |
|    | (i) approlitude = ±1 Pariod = 100° or                                                                                                               | B1B1 | Independent of graph. Do not allow                   |
|    | (i) amplitude = $\pm 1$ . Period = $180^{\circ}$ or $\pi$                                                                                           | ВІВІ | Independent of graph. Do not allow "4 to 5".         |
|    | <i>7</i> .                                                                                                                                          |      | 1 10 3 .                                             |
|    | (ii)                                                                                                                                                | B2,1 | Must be two complete cycles. 0/2 if                  |
|    | Ya Y                                                                                                                                                |      | not. Needs 3 to 5 marked or implied.                 |
|    | 57                                                                                                                                                  |      | Needs to start and finish at                         |
|    |                                                                                                                                                     |      | minimum. Needs curve not lines.                      |
|    | 3                                                                                                                                                   |      |                                                      |
|    | 2 2 22                                                                                                                                              |      |                                                      |
|    | 90 180 270 360 ×                                                                                                                                    |      |                                                      |
|    |                                                                                                                                                     |      |                                                      |
|    | Max (90°, 5) and (270°, 5)                                                                                                                          | B1B1 | Independent of graph (90, 270 gets                   |
|    |                                                                                                                                                     | [6]  | B1). Allow radians or degrees.                       |
|    |                                                                                                                                                     | 1    |                                                      |

| Page 3 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0606     | 1     |

| 8.                                                                                                   |              |                                                                             |
|------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------|
| 8 P 35 S S S S S S S S S S S S S S S S S S                                                           |              |                                                                             |
| (i) O, P, S correct                                                                                  | B2,1         | Give B1 if only one is correct.                                             |
| (ii) 34, 35, 36, 37 correct                                                                          | B2,1         | These 2 B marks can only be awarded only if B2 has been given for part (i). |
| $O \cap S = \text{odd squares} \rightarrow 4$<br>$O \cup S = \text{odd and even squares}$            | B1           | Co.                                                                         |
| $\rightarrow 49 + 5 = 54$                                                                            | M1A1<br>[7]  | Any correct method. Co.                                                     |
| 9. (i) $\log_4 2 = \frac{1}{2}  \log_8 64 = 2$<br>$\rightarrow 2x + 5 = 9^{1.5}  \rightarrow x = 11$ | B1B1<br>M1A1 | Anywhere. Forming equation and correctly eliminating "log". Co.             |
| (ii) Quadratic in 3 <sup>y</sup>                                                                     | M1           | Recognising that the equation is quadratic.                                 |
| Solution of quadratic = 0                                                                            | DM1          | Correct method of solving the equation = 0.                                 |
| $\rightarrow$ 3 <sup>y</sup> = 5 or -10                                                              |              |                                                                             |
| Solution of 3 <sup>y</sup> = k                                                                       | M1           | Not dependent on first M1. Correct method.                                  |
| y = 1.46 or 1.47                                                                                     | A1<br>[8]    | Co. (not for $\log 5 \div \log 3$ ). Ignore ans from $3^y = -10$ .          |

| Page 4 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0606     | 1     |

| 10.                                                                                                                                                                                                                                                                                                                                    |                      |                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------|
| x         2         3         4         5         6           y         9.2         8.8         9.4         10.4         11.6           xy         18.4         26.4         37.6         52.0         69.6           x²         4         9         16         25         36   (i) Plots xy against x² or x² against xy to get a line | M1<br>A2,1           | Knows what to do. Points accurate – single line with ruler                                                               |
| c = 12 to 12.5 or -7.25 to -7.75<br>m = 1.55 to 1.65 or 0.62 to 0.63<br>$xy = 1.6x^2 + 12$<br>or $x^2 = 0.625xy - 7.5$<br>$\rightarrow y = 1.6x + 12/x$                                                                                                                                                                                | B1<br>B1<br>M1<br>A1 | Allow if $y = mx + c$ used.<br>Allow if $y = mx + c$ used.<br>Must be $xy = mx^2 + c$ or                                 |
| (ii) Reads off at xy = 45<br>→ x = 4.5 to 4.6                                                                                                                                                                                                                                                                                          | M1A1<br>[9]          | x <sup>2</sup> = mxy + c.  Algebra is also ok as long as xy = 45 is solved with an equation given M1 above.              |
| 11. $y = xe^{2x}$<br>(i) $d/dx(e^{2x}) = 2e^{2x}$                                                                                                                                                                                                                                                                                      | B1                   | Anywhere – even if $dy/dx = 2x e^{2x}$                                                                                   |
| $dy/dx = e^{2x} + x.2 e^{2x}$<br>sets to $0 \rightarrow x = -0.5$                                                                                                                                                                                                                                                                      | M1<br>M1A1           | or 2 e <sup>2x</sup> . Use of correct product rule. Not DM mark. Allow for stating his dy/dx = 0.                        |
| (ii) $d^2y/dx^2 = 2 e^{2x} + [2 e^{2x} + 4x e^{2x}]$<br>= $4 e^{2x}(1 + x) \rightarrow k = 4$                                                                                                                                                                                                                                          | M1A1<br>A1           | Use of product rule needed.<br>Allow if he reaches 4e <sup>2x</sup> (1 + x).                                             |
| (iii) when $x = -0.5$ , $d^2y/dx^2$ is +ve $(0.74) \rightarrow Minimum$                                                                                                                                                                                                                                                                | M1A1<br>[9]          | No need for figures but needs correct x and correct d <sup>2</sup> y/dx <sup>2</sup> .                                   |
| 12. EITHER                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                          |
| At A, $y = 4$<br>$dy/dx = 2\cos x - 4\sin x$<br>$dy/dx = 0$ when $\tan x = \frac{1}{2}$<br>At B, $x = 0.464$ or $26.6^{\circ}$                                                                                                                                                                                                         | B1<br>M1A1<br>M1A1   | Anywhere. Any attempt at differentiation. Sets to 0 and recognises need for tangent. Co. Accept radians or degrees here. |

| Page 5 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0606     | 1     |

| _   |                                                                                                                                                                |                     |                                                                                                                                                                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\int (2\sin x + 4\cos x) dx = -2\cos x + 4\sin x$ Area under curve = [] <sub>0.464</sub> - [] <sub>0</sub> $\rightarrow -(-2) = 2.$                           | M1A1<br>DM1         | Any attempt with trig. functions.  x-limits used correctly. If "0" ignored or automatically set to 0, give DM0.                                                                                  |
|     | Reqd area = $2 - (4 \times 0.464) = 0.144$ (5 or 6).                                                                                                           | M1A1<br>[11]        | Plan mark – must be radians for both M and A.                                                                                                                                                    |
| 12. | OR $y = \sqrt{1+4x}$ $y = \sqrt{1+4x}$                                                                                                                         |                     |                                                                                                                                                                                                  |
|     | dy/dx = $\frac{1}{2}(1 + 4x)^{-\frac{1}{2}} \times 4$<br>At P, m = $\frac{2}{3}$<br>Eqn of tangent y - 3 = $\frac{2}{3}(x - 2)$<br>At B, x = $\frac{1^{2}}{3}$ | M1A1                | Any attempt with dy/dx – not for $\sqrt{(1 + 4x)} = 1 + 2\sqrt{x}$ . A mark needs everything.<br>Not for normal. Not for "y + y <sub>1</sub> " or for m on wrong side. Allow A for unsimplified. |
|     | $\int \sqrt{(1 + 4x)} dx = (1 + 4x)^{1.5} \times \sqrt[2]{3} \div 4$ Area under curve = $[]^2 - []^0 = 4^1/3$                                                  | M1A1<br>A1<br>DM1A1 | Any attempt at integration with (1 + 4x) to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0.                                                      |
|     | Shaded area = Area of trapezium - $4^1/_3 = {}^1/_3$                                                                                                           | M1                  | Plan mark independent of M marks.                                                                                                                                                                |
|     | Or Area under $y = {}^{2}/_{3}x + {}^{2}/_{3} - {}^{4}/_{3} = {}^{1}/_{3}$                                                                                     | A1                  | A1 co.                                                                                                                                                                                           |
|     | [or $\int x dy = \int (\frac{1}{4}y^2 - \frac{1}{4}) dy$<br>= $y^3/12 - y/4$                                                                                   | [M1A1<br>A1         | Attempt at differentiation. A1 for each term.                                                                                                                                                    |
|     | area to left of curve = $[]_3 - []_1 = 1^2/_3$<br>shaded area =                                                                                                | DM1A1               | Must be limits 1 to 3 used correctly.                                                                                                                                                            |
|     | $1^{2}/_{3}$ - triangle ( $1/_{2}$ .2.1 $1/_{3}$ ) = $1/_{3}$ ]                                                                                                | M1<br>A1]<br>[11]   | Plan mark independent of other Ms.                                                                                                                                                               |

DM1 for quadratic equation. Equation must be set to 0.

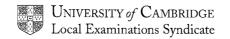
Formula - must be correctly used. Allow arithmetical errors such as errors over squaring a negative number.

Factors – must be an attempt at two brackets. Each bracket must then be equated to 0 and solved.

**Completing the square** – must result in  $(x\pm k)^2 = p$ . Allow if only one root considered.



**JUNE 2003** 


## INTERNATIONAL GCSE

MARK SCHEME

**MAXIMUM MARK: 80** 

**SYLLABUS/COMPONENT: 0606/02** 

ADDITIONAL MATHEMATICS
Paper 2



| Page 1 | Mark Scheme                    |      | Paper |
|--------|--------------------------------|------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0606 | 2     |

| 1     | Put $x = -b/2$ (or synthetic or long division to remainder)<br>$\Rightarrow 3b^3 + 7b^2 - 4 = 0 \text{ AG}$                                                                                                                                                    | M1              | A1     |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|
|       |                                                                                                                                                                                                                                                                | M1              | A1     |
|       |                                                                                                                                                                                                                                                                | IVI I           | AI     |
|       | Attempt to divide $\Rightarrow 3b^2 + 4b - 4$ (or $3b^2 + b - 2$ ) or further search $\Rightarrow b = -2$ [or $b = -1$ ]                                                                                                                                       | M1              |        |
| [7]   | Factorise (or formula) [3 term quadratic] or method for $3^{rd}$ value $\Rightarrow b = -2$ , -1 or $^2/_3$                                                                                                                                                    | DM <sup>2</sup> | 1 A1   |
| 2 (i) | $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \pm (9\mathbf{i} + 12\mathbf{j})$                                                                                                                                                           | M1              |        |
|       | Unit vector = $\overrightarrow{AB} \div \sqrt{9^2 + 12^2} = \pm (0.6\mathbf{i} + 0.8\mathbf{j})$ [Accept any equivalent unsimplified version of column vectors, $\pm \begin{pmatrix} 9 \\ 12 \end{pmatrix}$ , $\pm \begin{pmatrix} 0.6 \\ 0.8 \end{pmatrix}$ ] | M1              | A1     |
| (ii)  | $\overrightarrow{AC} = {}^{2}/_{3}\overrightarrow{AB} = 6\mathbf{i} + 8\mathbf{j}$ (or $\overrightarrow{CB} = {}^{1}/_{3}\overrightarrow{AB} = 3\mathbf{i} + 4\mathbf{j}$ )                                                                                    | M1              |        |
| [6]   | $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$ (or $\overrightarrow{OB} - \overrightarrow{CB}$ ) = 12 <b>i</b> + 5 <b>j</b> (or equivalent)                                                                                                 | M1              | A1     |
| 3     | $\int (3x^{0.5} + 2x^{-0.5}) dx = 3x^{1.5}/1.5 + 2x^{0.5}/0.5$                                                                                                                                                                                                 |                 |        |
|       | (one power correct sufficient for M mark)                                                                                                                                                                                                                      | M1 .            | A1 A1  |
|       | $\int_{1}^{8} = (2 \times 8\sqrt{8} + 4\sqrt{8}) - (2 + 4)$ Must be an attempt at integration                                                                                                                                                                  | M1              |        |
| [6]   | Putting $\sqrt{8} = 2\sqrt{2}$ (i.e. one term converted $\sqrt{2}$ to $\sqrt{2}$ ) $\Rightarrow$ -6 + 40 $\sqrt{2}$                                                                                                                                            | B1√             | A1     |
| 4     | $16^{x+1} = 2^{4x+4}$ or $16 \times 2^{4x}$ or $16 \times 4^{2x}$ or $16 \times 16^{x}$<br>20 $(4^{2x}) = 20(2^{4x})$ or $5(2^{4x+2})$ or $20 \times 16^{x}$                                                                                                   | B1              | B1     |
|       | $2^{x-3} 8^{x+2} = 2^{x-3} 2^{3x+6} = 2^{4x+3}$ or 8 x $2^{4x}$ or 8 x $4^{2x}$ or 8 x $16^{x}$                                                                                                                                                                | B1              |        |
|       | Cancel $2^{4x+2}$ or $2^{4x}$ and simplify $\Rightarrow 4.5$ or equivalent                                                                                                                                                                                     |                 | B1     |
| [4]   | Janoon 2 on 2 and onniping - 7.0 or equivalent                                                                                                                                                                                                                 |                 | וט     |
| 5 (i) | $f(0) = \frac{1}{2}$ $f^2(0) = f(\frac{1}{2}) = (\sqrt{e + 1})/4 \approx 0.662 \text{ (accept 0.66 or better)}$                                                                                                                                                | B1 N            | M1 A1  |
| (ii)  | $x = (e^y + 1)/4$ $\Rightarrow e^y = 4x - 1$ $\Rightarrow f^{-1}: x \mapsto \ln(4x - 1)$                                                                                                                                                                       | N               | /11 А1 |
| (iii) | Domain of $f^1$ is $x \ge \frac{1}{2}$ Range of $f^1$ is $f^1 \ge 0$                                                                                                                                                                                           | B1              | В1     |
| 1     |                                                                                                                                                                                                                                                                |                 |        |
| [7]   |                                                                                                                                                                                                                                                                |                 |        |

| Page 2 Mark Scheme |                                | Syllabus | Paper |
|--------------------|--------------------------------|----------|-------|
|                    | IGCSE EXAMINATIONS – JUNE 2003 | 0606     | 2     |

| 6 (i)            | $x^2 - 8x + 12 = 0$ Factorise or formula $\Rightarrow$ Critical values $x = 2, 6$<br>$x^2 - 8x + 12 > 0$ $\Rightarrow \{x : x < 2\} \cup \{x : x > 6\}$                                                                                             | M1                 | A1<br>A1      |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
|                  |                                                                                                                                                                                                                                                     |                    | Ai            |
| (ii)             | $x^2 - 8x = 0$ $\Rightarrow$ Must be an attempt to find 2 solutions $x^2 - 8x < 0$ $\Rightarrow \{x : 0 < x < 8\}$                                                                                                                                  | M1<br>A1           |               |
|                  | Solution set of $ x^2 - 8x + 6  < 6$ is combination of (i) and (ii) $\{x: 0 < x < 2\} \{x: 6 < x < 8\}$                                                                                                                                             | B1<br>(one<br>each |               |
| [7] <b>7 (i)</b> | 6! = 720                                                                                                                                                                                                                                            | rang<br>B1         | <del>e)</del> |
| ` '              |                                                                                                                                                                                                                                                     |                    |               |
| (11)             | M ⇒ 5! = 120                                                                                                                                                                                                                                        | M1                 | A1            |
| (iii)            | 4! 48                                                                                                                                                                                                                                               | M1                 | A1            |
| (iv)             | 6!/4! 2! = 15 Accept <sub>6</sub> C <sub>4</sub> or <sub>6</sub> C <sub>2</sub> = 15                                                                                                                                                                | B1                 |               |
| (v)              | 5!/3! 2! = 10 (or, answer to (iv) less ways M can be omitted)                                                                                                                                                                                       | M1                 | A1            |
| [8]              | (Listing – ignoring repeats ≥ 8 [M1] ⇒ 10 [A1])                                                                                                                                                                                                     |                    |               |
| 8 (i)            | Collect $\sin x$ and $\cos x$ $\Rightarrow \sin x = 5 \cos x$<br>Divide by $\cos x$ $\Rightarrow \tan x = 5 (\text{accept }^{1}/_{5} - \text{for M only})$<br>$x = 78.7^{\circ}$ or $(258.7^{\circ})$ i.e. $1^{\text{st}}$ solution + $180^{\circ}$ | M1<br>M1<br>A1     | <b>A</b> 1√   |
| /ii\             |                                                                                                                                                                                                                                                     | B1                 |               |
| (ii)             | Replace $\cos^2 y$ by $1 - \sin^2 y$<br>$3\sin^2 y + 4\sin y - 4 = 0$<br>Factorise (or formula) (3 term quadratic) $\Rightarrow \sin y = \frac{2}{3}$ (or -2)                                                                                       | М1                 |               |
|                  | y = 0.730 (accept 0.73 or better) or (2.41) i.e. $\pi$ (or $\frac{22}{7}$ ) less 1 <sup>st</sup> solution                                                                                                                                           | A1                 | <b>A</b> 1√   |
| [8]              | y = 0.730 (accept 0.73 of better) of (2.41) i.e. $n$ (of $n$ ) less 1. Solution 7                                                                                                                                                                   |                    | AIV           |
| 9 (i)            | $\int (12t - t^2)  \mathrm{d}t = 6t^2 - \frac{1}{3}t^3$                                                                                                                                                                                             | M1                 | A1            |
|                  | From $t = 0$ to $t = 6$ distance = $\int_0^6 = 144$                                                                                                                                                                                                 |                    | A1            |
|                  | Max. speed = $36 \Rightarrow$ from $t = 6$ to $t = 12$ distance = $36 \times 6$ (= 216)                                                                                                                                                             |                    | B1            |
|                  | During deceleration distance = $(0^2 - 36^2) \div 2(-4) = 162$                                                                                                                                                                                      |                    | ٠,            |
|                  | Area of $\Delta$ is fine for M mark but value of $t$ must be from <i>constant</i> acceleration <i>not</i> $12 - 2t = \pm 4$                                                                                                                         |                    |               |
|                  | Total distance = 144 + 216 + 162 = 522                                                                                                                                                                                                              | M1                 | ۸ ۸           |
| /#1              | v ,                                                                                                                                                                                                                                                 |                    | A1            |
| (ii)             | <b>↑</b>                                                                                                                                                                                                                                            |                    |               |
|                  |                                                                                                                                                                                                                                                     |                    |               |
|                  | t                                                                                                                                                                                                                                                   | B2, 1              | I, O          |
| [8]              |                                                                                                                                                                                                                                                     |                    |               |

| Page 3 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0606     | 2     |

| 10 (i) | 
$$\frac{dy}{dx} = \frac{(x-2)2 - (2x+4)!}{(x-2)^2} = \frac{-8}{(x-2)^2} \Rightarrow k = -8$$
 | Must be correct formula for M mark (accept  $\frac{-8}{(x-2)^2}$  as answer) | M1 A1 |

(ii) | When  $y = 0$ ,  $x = -2$  (B mark is for *one* solution only) NB.  $x = 0$ ,  $y = -2$  | B1 |

 $M_{\text{tangent}} = -8/16 = -1/2 \Rightarrow m_{\text{normal}} = +2$  (M is for use of  $m_1$   $m_2 = -1$ , whether numeric or algebraic) | M1 |

Equation of normal is  $y = 0 = 2(x+2)$  (candidate's  $m_{\text{normal}}$  and  $[x]_{y=0}$  for M mark) | M1 A1 |

(iii) | When  $y = 6$ ,  $x = 4$  | B1 | M1 A1 |

 $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} = \frac{-8}{(x-2)^2} \times 0.05 = \frac{-8}{4} \times 0.05 = -0.1$  (accept  $\pm$ ) | M1 A1 |

I.e.  $\left[\frac{dy}{dx}\right]_{y=4}^y \times 0.05$  for M mark. |

(i) is for error in k only. (Condone  $S \approx \frac{dy}{dx} \times S$ )

11 | EITHER | D (13½, 11) |

 $\frac{A}{(3,2)} \times \frac{dy}{dx} = \frac{(4-2)/(7-3)}{(x-2)^2} \times \frac{dy}{dx} = \frac{(x-2)^2}{(x-2)^2} \times \frac{dy}{dx} = \frac{($ 

| Page 4 | 4 Mark Scheme                  |      | Paper |
|--------|--------------------------------|------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0606 | 2     |

|      | (ii) $\frac{\Delta EBD}{\Delta EAC}$ = (ratio of corresponding sides or x- or y- steps) <sup>2</sup> = 4/1 | M1          | A1  |
|------|------------------------------------------------------------------------------------------------------------|-------------|-----|
|      | $\Delta EAC$ Quadrilateral ABDC/ $\Delta$ EBD = 3/4                                                        | A1          |     |
|      |                                                                                                            |             |     |
|      | [Or, find <i>E</i> (1/2, -3) and then use array method to find <i>one</i> of:                              |             | ۸.4 |
| [10] | area quadrilateral <i>ABDC</i> = 22.5 area $\Delta$ <i>EBD</i> = 30                                        | M1<br>A1    | A1  |
| [10] | Find other area and hence ratio = 3/4 or equivalent]                                                       |             |     |
| 11   | OR                                                                                                         |             |     |
|      | O $r$ $A$ $G$                                                          |             |     |
|      | $P = 5 = Q$ (i) $(r+6)^2 + 5^2 = (r+7)^2$                                                                  | M1          |     |
|      |                                                                                                            |             |     |
|      | Solve $\Rightarrow r = 6$                                                                                  | M1          | A1  |
|      | $tan AOB = 5/12$ $AOB = 0.395 \text{ or } 22.6^{\circ}$                                                    | M1          |     |
|      | Length of arc $AB = 6 \times 0.395 = 2.37$ or better                                                       | M1          | A1  |
|      | (ii) Sector $AOB = \frac{1}{2} \times 6^2 \times 0.395 = 7.11$                                             | M1          |     |
|      | Shaded area = ½ x 5 x 12 - 7.11                                                                            | M1          |     |
|      | All figures in sector and triangle correct $\sqrt{}$                                                       | <b>A</b> 1√ |     |
| [10] | 22.9 or better                                                                                             | A1          |     |

**Grade thresholds** taken for Syllabus 0606 (Additional Mathematics) in the June 2003 examination.

|             | maximum           | minimum | mark required | for grade: |
|-------------|-------------------|---------|---------------|------------|
|             | mark<br>available | Α       | С             | Е          |
| Component 1 | 80                | 54      | 29            | 20         |
| Component 2 | 80                | 60      | 34            | 23         |

Grade A\* does not exist at the level of an individual component.